Properties of light

In this case, applying Snell's law:

Properties of light

Asset What is Light? Electromagnetic radiation waves, as their names suggest are fluctuations of electric and magnetic fields, which can transport energy from one location to another. Visible light is not inherently different from the other parts of the electromagnetic spectrum with the exception that the human eye can detect visible waves.

No Related Assets

Electromagnetic radiation can also be described in terms of a stream of photons which are massless particles each travelling with wavelike properties at the speed of light. A photon is the smallest quantity quantum of energy which can be transported and it was the realization that light travelled in discrete quanta that was the origins of Quantum Theory.

Properties of light

The detection of light is a very Properties of light tool for probing the universe around us. As light interacts with matter it can be become altered and by studying light that has originated or interacted with matter, many of the properties of that matter can be determined.

The atoms, ions or molecules have defined energy levels usually associated with energy levels that electrons in the matter can hold.

Light can be generated by the matter or a photon of light can interact with the energy levels in a number of ways. We can represent the energy levels in a diagram known as a Jablonski diagram.

Properties of Light

An example of one is shown in the diagram above. An atom or molecule in the lowest energy state possible known as the ground state can absorb a photon which will allow the atom or molecule to be raised to a higher energy level state or become excited.

Hence the matter can absorb light of characteristic wavelengths such as the blue light in the example on the right or the violet light in the example on the left.

The atom or molecule won't stay in an excited state so it relaxes back to the ground state by several ways.


In the example on the right, the atom or molecule emits two photons both of lower energy than the absorbed photon. The photons emitted will be a characteristic energy appropriate for a particular atom or compound and so by studying the light emission the matter under investigation can be determined.

In the example on the left the excited atom or molecule initially loses energy by not emitting a photon and instead relaxes to the lower energy state by internal processes which typically heat up the matter. The intermediate energy level then relaxes to the ground state by the emission of a photon of orange light.The optical properties depend on the manner that visible light is transmitted through the crystal, and thus are dependent on crystal structure, crystal symmetry, and chemical composition of the mineral.

Because I am interested in history—and particularly the history of oppressed people groups—my ears always perk when my friend and fellow writer Shel Pais starts talking about his dad, a Holocaust survivor.

With Properties of Light, the award-winning author of The Mind-Body Problem gives us “one of the magnificent performances in contemporary fiction, a fusion of the imagination and intellect achingly beautiful, moving, and intriguing on every page” (Charles Johnson)/5(16).

Propagation of light through a slit demonstrates wave properties. Cancellation and addition of diffracted waves results in striped pattern in contrast to what would be expected by particles. The basic properties of light are its wavelength, frequency, energy and speed.

Light is composed of energy particles called photons and can behave as either a wave or as separate particles. The wavelength and frequency of light determine where the light is . 10 properties of light 1.

Properties of Light 2. Properties of Light • • • • • • • • • Effects of Materials on Light Reflection Refraction Dispersion Total Internal Reflection .

Properties of Light